gcmotion.qfactor#

Here is a list of the availiable q-factor configurations:

Unity q-factor

Unity

Parabolic q-factor

Parabolic

Hypergeometric q-factor

Hypergeometric

PrecomputedHypergeometric q-factor

PrecomputedHypergeometric

(Numerical) SmartPositive

SmartPositive

(Numerical) SmartNegative

SmartNegative

(Numerical) SmartNegative2

SmartNegative2

(Numerical) DTTPositive

DTTPositive

(Numerical) DTTNegative

DTTNegative

Their parameters are documented below.

Examples#

>>> import gcmotion as gcm
>>>
>>> # Quantity Constructor
>>> Rnum = 1.6
>>> anum = 0.5
>>> B0num = 1
>>> species = "p"
>>> Q = gcm.QuantityConstructor(R=Rnum, a=anum, B0=B0num, species=species)
>>>
>>> # Intermediate values
>>> a = Q(anum, "meters")
>>> B0 = Q(B0num, "Tesla")
>>>
>>> # Some qfactors
>>> qfactor1 = gcm.qfactor.Unity()
>>> qfactor3 = gcm.qfactor.Parabolic(a, B0, q0=1.1, q_wall=3.8)
>>> qfactor3 = gcm.qfactor.Hypergeometric(a, B0, q0=1.1, q_wall=3.8, n=2)

Creating a numerical Qfactor. Use the respective Initializer to grab the normalization constants from the dataset automatically. See Initializers

>>> import gcmotion as gcm
>>>
>>> # Quantity Constructor
>>> species = "p"
>>> smart_init = gcm.SmartNegativeInit(species)
>>> Q = smart_init.QuantityConstructor()
>>>
>>> # Intermediate Quantities
>>> R = smart_init.R
>>> a = smart_init.a
>>> B0 = smart_init.B0
>>>
>>> qfactor=gcm.qfactor.SmartNegative(),

Note

The values of a and B0 are necessary whenever we define the qfactor with reference to its value at the wall.

Methods#

The functions solverqNU and psipNU work identically in every class, so I list their methods here.

gcmotion.qfactor.QFactor.solverqNU(self, psi: float | ndarray) float | ndarray#

Calculates \(q(\psi)\). Input and output are both floats or np.ndarrays, in [NU].

Used inside the solver.

Parameters:
psifloat | np.ndarray

Value(s) of \(\psi\) in NU.

Returns:
float | np.ndarray

Calculated \(\psi_p(\psi)\) in NU.

gcmotion.qfactor.QFactor.psipNU(self, psi: float | ndarray) float | ndarray#

Calculates \(\psi_p(\psi)\). Input and output are both floats or np.ndarrays, in [NU].

Parameters:
psifloat | np.ndarray

Value(s) of \(\psi\) in NU.

Returns:
float | np.ndarray

Calculated \(\psi_p(\psi)\) in NU.

Available q-factors#

Unity

class gcmotion.qfactor.Unity#

Initializes an object q with \(q(\psi) = 1\) and \(\psi_p=\psi\).

Methods

psipNU(psi)

Always returns psi.

solverqNU(psi)

Always returns 1.

Parabolic

class gcmotion.qfactor.Parabolic(a: Quantity, B0: Quantity, q0: float, q_wall: float)#

Initializes an object q with

\[q(\psi) = q_0 + (q_{wall}-q_0)\bigg(\dfrac{\psi}{\psi_{wall}}\ \bigg)^2\]

\(\psi_p(\psi)\) is calculated from:

\[\psi_p(\psi) = \dfrac{\psi_{wall}}{\sqrt{q_0 (q_{wall}-q_0)}}\ \arctan\bigg( \dfrac{\psi\sqrt{q_{wall}-q_0}}{\psi_{wall}\sqrt{q_0}}\ \bigg)\]
Parameters:
aQuantity

float The tokamak’s minor radius in [m].

B0Quantity

The Magnetic field’s strength in [T]

q0float

q-value at the magnetic axis.

q_wallfloat

q_value at the wall.

Methods

psipNU(psi)

Calculates \(\psi_p(\psi)\).

solverqNU(psi)

Calculates \(q(\psi)\).

Hypergeometric

class gcmotion.qfactor.Hypergeometric(a: Quantity, B0: Quantity, q0: float, q_wall: float, n: int)#

Initializes an object q with:

\[q(\psi) = q_0\bigg\{ 1 + \bigg[ \bigg(\dfrac{q_{wall}}{q_0}\ \bigg)^n -1 \bigg] \ \bigg( \dfrac{\psi}{\psi_{wall}} \bigg)^n \bigg\}^{1/n}\]

\(\psi_p(\psi)\) is calculated from:

\[\psi_p(\psi) = \dfrac{\psi}{q_0} \phantom{1}_2 F_1\ \bigg[ \dfrac{1}{n}, \dfrac{1}{n}, 1+\dfrac{1}{n}, \bigg(1 - \bigg( \dfrac{q_{wall}}{q_0} \bigg)^n\bigg) \bigg( \dfrac{\psi}{\psi_{wall}} \bigg)^n \bigg]\]

where \(\phantom{1}_2 F_1\) the hypergeometric function.

Parameters:
aQuantity

float The tokamak’s minor radius in [m].

B0Quantity

The Magnetic field’s strength in [T].

q0float

q-value at the magnetic axis.

q_wallfloat

q_value at the wall.

nint

Order of equillibrium (1: peaked, 2: round, 4: flat).

Methods

psipNU(psi)

Calculates \(\psi_p(\psi)\).

solverqNU(psi)

Calculates \(q(\psi)\).

PrecomputedHypergeometric

class gcmotion.qfactor.PrecomputedHypergeometric(a: Quantity, B0: Quantity, q0: float, q_wall: float, n: int)#

Same as the Hypergeometric qfactor but with precomputed hyp2f1.

Since the calculation of hyp2f1 is by a lot slower than any other calculation, it makes sense to precompute an array with all the needed values and make a spline on it.

Methods

psipNU(psi)

Calculates \(\psi_p(\psi)\).

solverqNU(psi)

Calculates \(q(\psi)\).

SmartPositive

class gcmotion.qfactor.SmartPositive#

Initializes an object q with numerical data from the Smart Tokamak with Positive Triangularity.

The dataset must be stored in ./gcmotion/tokamak/reconstructed/smart_positive.nc.

Methods

psipNU(psi)

Calculates \(\psi_p(\psi)\).

solverqNU(psi)

Calculates \(q(\psi)\).

SmartNegative

class gcmotion.qfactor.SmartNegative#

Initializes an object q with numerical data from the Smart Tokamak with Negative Triangularity.

The dataset must be stored in ./gcmotion/tokamak/reconstructed/smart_negative.nc.

Methods

psipNU(psi)

Calculates \(\psi_p(\psi)\).

solverqNU(psi)

Calculates \(q(\psi)\).

SmartNegative2

class gcmotion.qfactor.SmartNegative2#

Initializes an object q with numerical data from the Smart Tokamak with Negative Triangularity.

The dataset must be stored in ./gcmotion/tokamak/reconstructed/smart_negative2.nc.

Methods

psipNU(psi)

Calculates \(\psi_p(\psi)\).

solverqNU(psi)

Calculates \(q(\psi)\).

DTTPositive

class gcmotion.qfactor.DTTPositive#

Initializes an object q with numerical data from the Divertor Test Tokamak with Positive Triangularity.

The dataset must be stored in ./gcmotion/tokamak/reconstructed/dtt_positive.nc.

Methods

psipNU(psi)

Calculates \(\psi_p(\psi)\).

solverqNU(psi)

Calculates \(q(\psi)\).

DTTNegative

class gcmotion.qfactor.DTTNegative#

Initializes an object q with numerical data from the Divertor Test Tokamak with Negative Triangularity.

The dataset must be stored in ./gcmotion/tokamak/reconstructed/dtt_negative.nc.

Methods

psipNU(psi)

Calculates \(\psi_p(\psi)\).

solverqNU(psi)

Calculates \(q(\psi)\).