.. _bfield_configuration: ############### gcmotion.bfield ############### .. currentmodule:: gcmotion.bfield Here is a list of the availiable q-factor configurations: ============================ ============================ Large Aspect Ratio :py:class:`LAR` (Numerical) SmartPositve :py:class:`SmartPositive` (Numerical) SmartNegative :py:class:`SmartNegative` (Numerical) SmartNegative2 :py:class:`SmartNegative2` (Numerical) DTTPositive :py:class:`DTTPositive` (Numerical) DTTNegative :py:class:`DTTNegative` ============================ ============================ Their parameters are documented below. .. rubric:: Examples Creating an analytic Magnetic Field >>> import gcmotion as gcm >>> >>> # Quantity Constructor >>> Rnum = 1.6 >>> anum = 0.5 >>> B0num = 1 >>> species = "p" >>> Q = gcm.QuantityConstructor(R=Rnum, a=anum, B0=B0num, species=species) >>> >>> # Intermediate values >>> B0 = Q(B0num, "Tesla") >>> i = Q(0, "NUPlasma_current") >>> g = Q(1, "NUPlasma_current") >>> >>> # A magnetic field >>> bfield = gcm.bfield.LAR(B0=B0, i=i, g=g) Creating a numerical Magneticfield. Use the respective Initializer to grab the normalization constants from the dataset automatically. See :ref:`Initializers ` >>> import gcmotion as gcm >>> >>> # Quantity Constructor >>> species = "p" >>> smart_init = gcm.SmartNegativeInit(species) >>> Q = smart_init.QuantityConstructor() >>> >>> # Intermediate Quantities >>> R = smart_init.R >>> a = smart_init.a >>> B0 = smart_init.B0 >>> >>> bfield=gcm.bfield.SmartNegative(), ******* Methods ******* The functions `bigNU` and `solverbNU` work identically in every class, so I list their methods :ref:`here `. .. _available_bfields: ************************* Available magnetic fields ************************* .. rubric:: LAR .. autoclass:: LAR :class-doc-from: class .. rubric:: SmartPositive .. autoclass:: SmartPositive :class-doc-from: class .. rubric:: SmartNegative .. autoclass:: SmartNegative :class-doc-from: class .. rubric:: SmartNegative2 .. autoclass:: SmartNegative2 :class-doc-from: class .. rubric:: DTTPositive .. autoclass:: DTTPositive :class-doc-from: class .. rubric:: DTTNegative .. autoclass:: DTTNegative :class-doc-from: class